【摘要】信任是人機(jī)互動(dòng)和人際互動(dòng)的基石。然而,由于算法黑箱的不透明性和不可解釋性,人工智能系統(tǒng)及其服務(wù)在賦權(quán)和便利一部分人的同時(shí),算法濫用、算法誤用和算法壟斷也在侵蝕、排斥和邊緣化另外一部分人的利益。就此而言,算法即重構(gòu)、程序即政治,在智能化環(huán)境中,信任被破壞和侵蝕不僅存在于人機(jī)互動(dòng)之間,人與人之間的傳統(tǒng)信任關(guān)系也因在線匿名和算法驅(qū)動(dòng)而陷入衰退。正是考慮到人工智能帶來(lái)的種種社會(huì)信任挑戰(zhàn),以算法規(guī)制為核心的人工智能治理首先應(yīng)著眼于以人為本構(gòu)建可信賴人工智能生態(tài)體系,并基于技術(shù)秉性和道德法律框架重建人機(jī)信任關(guān)系和人際信任關(guān)系。
【關(guān)鍵詞】算法黑箱 人機(jī)信任 人際信任 計(jì)算政治
【中圖分類號(hào)】TP301.6 【文獻(xiàn)標(biāo)識(shí)碼】A
【DOI】10.16619/j.cnki.rmltxsqy.2024.16.008
【作者簡(jiǎn)介】董青嶺,對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué)國(guó)際關(guān)系學(xué)院教授、博導(dǎo),國(guó)家安全計(jì)算實(shí)驗(yàn)室(CLNS)主任。研究方向?yàn)榇髷?shù)據(jù)海外輿情監(jiān)測(cè)與沖突預(yù)警、國(guó)際關(guān)系自然語(yǔ)言處理與社會(huì)情感挖掘、機(jī)器學(xué)習(xí)與國(guó)際關(guān)系智能分析。主要著作有《大數(shù)據(jù)與機(jī)器學(xué)習(xí):復(fù)雜社會(huì)的政治分析》《復(fù)合建構(gòu)主義:進(jìn)化沖突與進(jìn)化合作》等。
長(zhǎng)期以來(lái),信任一直是人類互動(dòng)的基石,是社會(huì)、經(jīng)濟(jì)和政府賴以建立的基礎(chǔ)。伴隨著人工智能技術(shù)的日臻成熟和應(yīng)用普及,現(xiàn)實(shí)世界事實(shí)上已經(jīng)演變成為一個(gè)被各種算法所包裹的社會(huì)計(jì)算空間。在這樣一個(gè)計(jì)算空間中,人人皆為算法使用者,同時(shí)又皆為算法對(duì)象,不停地被各種算法所影響和操控。作為一種新質(zhì)生產(chǎn)力、新的權(quán)力類型和新的認(rèn)知工具,人工智能正逐步滲入個(gè)人感知、商業(yè)交易甚至政府決策之中,由此導(dǎo)致的算法無(wú)處不在已然成為當(dāng)下智能社會(huì)建構(gòu)的重要技術(shù)特征。然而,在現(xiàn)實(shí)生活中,算法從來(lái)就不是客觀中立的,至少不是像人們所想象的那樣“公正無(wú)私”,算法在賦權(quán)和便利一部分人的同時(shí),算法濫用、算法誤用和算法壟斷也在排斥和邊緣化另外一部分人,并使之日趨淪落為“算法難民”[1]或“人工智能的奴役對(duì)象”。由此可見,算法在改善治理、提升效率和創(chuàng)新服務(wù)的同時(shí),也帶來(lái)了算法歧視、技術(shù)霸凌和社會(huì)信任侵蝕等問題。
智能系統(tǒng)及其服務(wù)的信任危機(jī):從不信任到過度信任
毫無(wú)疑問,智能技術(shù)的進(jìn)步及其應(yīng)用正在給人類社會(huì)帶來(lái)前所未有的改變。由數(shù)據(jù)和算法所驅(qū)動(dòng)的人工智能究竟是促進(jìn)了社會(huì)信任還是使得社會(huì)信任變得更為脆弱?2023年12月22日,美國(guó)華盛頓郵報(bào)與喬治·梅森大學(xué)政府與政策學(xué)院聯(lián)合發(fā)布了一項(xiàng)關(guān)于民眾對(duì)社交媒體信任度的調(diào)查報(bào)告,結(jié)果顯示:近四分之三的美國(guó)人不信任Facebook、WhatsApp、Instagram、YouTube等平臺(tái);約70%的美國(guó)人表示,他們懷疑自己的智能手機(jī)等數(shù)字設(shè)備會(huì)在未經(jīng)允許的情況下監(jiān)聽他們的談話,因?yàn)樵谒麄兣c朋友談?wù)撃臣轮?,再次登錄Facebook等平臺(tái)時(shí)就會(huì)收到相關(guān)主題的商品或服務(wù)推薦。雖然科技巨頭們都對(duì)此予以否認(rèn),但許多美國(guó)人還是感到不安。與此同時(shí),約82%的受調(diào)民眾對(duì)人工智能算法下的定向廣告推送持負(fù)面看法。[2]信任是網(wǎng)絡(luò)秩序的基石,是數(shù)字交互的基礎(chǔ)和前提。然而,頻繁的網(wǎng)絡(luò)攻擊、數(shù)據(jù)泄露、數(shù)據(jù)濫用和隱私侵害等安全風(fēng)險(xiǎn)會(huì)嚴(yán)重削弱社會(huì)主體的安全感,進(jìn)而破壞人機(jī)之間乃至人與人之間的社會(huì)信任關(guān)系。
首先,社會(huì)對(duì)人工智能系統(tǒng)及其所承載服務(wù)的不信任在很大程度上源自不完整數(shù)據(jù)和錯(cuò)誤數(shù)據(jù)的使用。僅就算法模型產(chǎn)生過程而言,人工智能算法是由人類生成的數(shù)據(jù)集所塑造的,算法在訓(xùn)練過程中不可避免地會(huì)繼承數(shù)據(jù)固有的偏見和成見。如果輸入的數(shù)據(jù)受到數(shù)據(jù)源不準(zhǔn)確、樣本偏差或社會(huì)偏見的影響,那么人工智能的輸出結(jié)果很可能會(huì)反映這些缺陷,并加劇和放大諸如種族、膚色、性別、宗教、學(xué)歷和地域歧視等社會(huì)爭(zhēng)議話題。就此而言,算法本身就是社會(huì)偏見和數(shù)據(jù)缺陷的產(chǎn)物,任何一種算法都不是完美的,因其自帶的偏見所產(chǎn)生的算法歧視在實(shí)踐中更是難以消除。在此情形下,信任人工智能系統(tǒng)及其所提供的服務(wù)意味著人們相信數(shù)據(jù)的真實(shí)性和可靠性,而如果數(shù)據(jù)本身是殘缺或錯(cuò)誤的,那么由算法邏輯所驅(qū)動(dòng)的人工智能應(yīng)用就會(huì)給用戶帶來(lái)焦慮、懷疑和不安,進(jìn)而破壞人機(jī)之間的信任和交互。
其次,人工智能算法黑箱的不透明性使得社會(huì)信任問題正變得越來(lái)越復(fù)雜。如果算法流程和算法工作原理是不透明的,那么人機(jī)之間的交互就會(huì)變得異常脆弱而不可信。因?yàn)橛脩羧绻恢罃?shù)據(jù)是如何被收集、使用和處理的,那么他們就無(wú)從確定涉及自身利益和隱私的數(shù)據(jù)會(huì)不會(huì)被誤用、濫用或被泄露給第三方,基于人工智能算法的服務(wù)也就變得不安全。這種因黑箱問題而導(dǎo)致的透明度匱乏很容易引起懷疑和不信任,特別是當(dāng)人工智能驅(qū)動(dòng)的決策會(huì)對(duì)現(xiàn)實(shí)世界產(chǎn)生重大影響時(shí),人們會(huì)愈加擔(dān)心算法工具失去控制并造成難以挽回的損失,由此,要求監(jiān)管人工智能的呼聲日益高漲,監(jiān)管機(jī)構(gòu)和游說團(tuán)體也如雨后春筍般出現(xiàn)。但如果外部監(jiān)督者本身不值得信任,則外部審查也無(wú)法促進(jìn)信任。此時(shí),在不信任的情況下披露信息可能會(huì)引發(fā)社會(huì)群體對(duì)人工智能系統(tǒng)及其服務(wù)更大的誤解。換言之,當(dāng)算法黑箱不透明或難以透明時(shí),即便是監(jiān)管,也難以落到實(shí)處。此時(shí),不可靠或無(wú)法評(píng)估人工智能算法的可靠性便成為人機(jī)之間不信任的來(lái)源。
再次,算法泛濫和人工智能應(yīng)用的過度部署正在威脅個(gè)人隱私安全。在數(shù)字時(shí)代,國(guó)家通常會(huì)為信息的傳播建立一系列法律和技術(shù)屏障,算法則是其中的關(guān)鍵技術(shù)環(huán)節(jié)。借助于算法,政府可以在網(wǎng)絡(luò)平臺(tái)中限制危害社會(huì)公共安全的不良信息傳播,從而在減少網(wǎng)絡(luò)犯罪現(xiàn)象的同時(shí),又能對(duì)公民進(jìn)行有效監(jiān)視與管理。然而,隨處可見的智能探頭、移動(dòng)端APP和各種傳感設(shè)備在提升公共安全時(shí),算法也正在打著風(fēng)險(xiǎn)管控的旗號(hào)廣泛參與人們的生活,以至于人們?cè)谙硎苤悄芑憷耐瑫r(shí)也在承擔(dān)著隱私泄露的風(fēng)險(xiǎn)。批評(píng)者和支持者都認(rèn)為,算法監(jiān)視可能會(huì)限制溝通與表達(dá)自由,人工智能的過量部署可能會(huì)給人類生活帶來(lái)意想不到的嚴(yán)重后果,譬如隱私泄露會(huì)導(dǎo)致電子欺詐、網(wǎng)絡(luò)勒索、關(guān)系破壞和社會(huì)混亂,特別是在社會(huì)矛盾積聚、人們對(duì)政府和組織機(jī)構(gòu)信任度下降的背景下,這些擔(dān)憂就會(huì)更加尖銳和突出。
最后,數(shù)據(jù)壟斷和算法壟斷會(huì)進(jìn)一步強(qiáng)化社會(huì)利益分配的不均并助長(zhǎng)平臺(tái)的數(shù)字話語(yǔ)霸權(quán)。一般情況下,高質(zhì)量的數(shù)據(jù)很難獲得或獲取成本較高,數(shù)據(jù)資源的壟斷會(huì)使一些算法模型只服務(wù)于政府和某些公司的利益,在此情形下,算法擁有者和使用者會(huì)出于利益最大化對(duì)算法模型進(jìn)行技術(shù)控制,進(jìn)而出現(xiàn)參數(shù)調(diào)整型偏差修正,這些修改動(dòng)因諸如公司裁員、形象維護(hù)和過失遮蔽等,以至于一些人的利益在特定算法規(guī)則下被漠視和犧牲,而另外一些人的利益則被算法控制性強(qiáng)化和放大,典型操作如流量明星的影響力排名、產(chǎn)品的競(jìng)爭(zhēng)力排行榜以及基于算法的薦房、薦股等投資推薦行為等。至此,算法本身已不能簡(jiǎn)單地被視之為“價(jià)值中立”的技術(shù)發(fā)明,它是利益壟斷的產(chǎn)物,在應(yīng)用推廣中又不斷強(qiáng)化本就不公平的利益分配格局,并通過強(qiáng)勢(shì)的話語(yǔ)霸權(quán)進(jìn)一步侵犯了弱勢(shì)群體的利益。隨著公司和政府越來(lái)越多地依賴人工智能開展服務(wù)和業(yè)務(wù),不信任會(huì)隨著利益分配的不均勻性顯著增加。以此觀之,算法是智能服務(wù)的承載,更是利益分配的工具,社交媒體平臺(tái)上因算法應(yīng)用而損害和違背用戶利益的例子比比皆是。此時(shí),公司利益與用戶利益存在系統(tǒng)性分歧,不信任及其引起的警惕本身就是為了防止被剝削或免遭不公平對(duì)待。
此外,人工智能算法應(yīng)用有時(shí)還會(huì)引發(fā)一種被稱之為“蓋爾曼失憶癥”的過度信任現(xiàn)象,這指的是用戶即使看到人工智能算法模塊在某些熟悉的話題上犯了令人尷尬的錯(cuò)誤,卻依然傾向于信任人工智能系統(tǒng)在其他問題上的服務(wù)。其邏輯類同于防盜攝像頭可以拍到每一個(gè)敲門人,但并非每個(gè)敲門人都是小偷,只要漏報(bào)和誤報(bào)在精確度范圍內(nèi)就可接受。這也就是說,人工智能只要成功抓住一次小偷就可以彌補(bǔ)多次失敗所造成的信任缺失。另外,在很多人類本身無(wú)法觸及或難以完成任務(wù)的領(lǐng)域,人們往往更信任人工智能所產(chǎn)生的解題結(jié)果,如購(gòu)物推薦等。如果系統(tǒng)提供了推薦性操作,人們更愿意嘗試相信系統(tǒng)推薦的方案而不是長(zhǎng)期保持懷疑。
計(jì)算政治的崛起:被算法化的人際互動(dòng)與在線虛假宣傳
在信任問題上,伴隨著大數(shù)據(jù)和人工智能技術(shù)的應(yīng)用,現(xiàn)代政治運(yùn)行愈發(fā)朝向一種前所未有的“算法”政治生態(tài)演進(jìn)。人工智能不僅僅是一場(chǎng)新的技術(shù)革命,更是一場(chǎng)社會(huì)生活革命和信任革命,它所帶來(lái)的不僅僅是技術(shù)的創(chuàng)新和社會(huì)生活的便利,同時(shí)還有各種智能化風(fēng)險(xiǎn)和政治力量的重新分化組合,算法的嵌入式應(yīng)用不僅正在改變?nèi)伺c機(jī)器之間的信任關(guān)系,同時(shí)更在重塑人與人之間的社會(huì)信任關(guān)系。在數(shù)字空間中,人們已不再盲目相信所謂的“權(quán)威信息來(lái)源”和“機(jī)構(gòu)發(fā)布”,任何一條信息在網(wǎng)絡(luò)發(fā)酵之后都會(huì)被反復(fù)地交叉驗(yàn)證、否證和辟謠,即便當(dāng)事人親自出面澄清,人們也不再相信所謂的“還原事實(shí)真相”。就此而言,算法即重構(gòu)、程序即政治,信任被破壞和侵蝕不僅存在于人機(jī)互動(dòng)之間,人與人之間的傳統(tǒng)信任關(guān)系也因在線匿名和算法驅(qū)動(dòng)而陷入衰退。依托于現(xiàn)代社交網(wǎng)絡(luò)和數(shù)字基礎(chǔ)設(shè)施,政治機(jī)器人已經(jīng)成為在線政治溝通的重要工具,在政治咨詢領(lǐng)域有些政治機(jī)器人將代替人工職員發(fā)揮無(wú)人值守、無(wú)人巡航甚至自動(dòng)應(yīng)答的作用,但在另外一些方面,一些政客也可以利用機(jī)器人所生成的虛假賬號(hào)和虛假信息轉(zhuǎn)移斗爭(zhēng)視線、抹黑對(duì)手形象、逃避政治責(zé)任或爭(zhēng)取民心支持,使自己盡快擺脫政治困境。
放眼未來(lái),隨著時(shí)間的推移和技術(shù)的進(jìn)步,由智能算法所驅(qū)動(dòng)的計(jì)算政治操作將變得越來(lái)越復(fù)雜,其對(duì)社會(huì)信任的影響也將越來(lái)越難以控制。概括而言,這些變化中的挑戰(zhàn)包括如下幾個(gè)方面。
第一,政治機(jī)器人的應(yīng)用正在將政治運(yùn)行帶入虛實(shí)之間。政治機(jī)器人通常使用虛假賬戶或盜竊他人身份發(fā)布信息,為了看起來(lái)像是一個(gè)人類行為體,它會(huì)虛構(gòu)自己的個(gè)人資料照片、曾經(jīng)發(fā)布的帖子,同時(shí)生成大量的粉絲關(guān)注者,以此偽裝成人類行為體來(lái)分發(fā)政治聲明、傳播虛假信息或偽造政治議題,通過自動(dòng)點(diǎn)贊或自動(dòng)轉(zhuǎn)發(fā)來(lái)擴(kuò)大社會(huì)影響,甚至以發(fā)帖子或回復(fù)評(píng)論等形式來(lái)虛構(gòu)政治互動(dòng)。此外,通過調(diào)用編程接口(API),社交機(jī)器人還可以假裝人類操作員訪問社交網(wǎng)絡(luò),并接收和發(fā)送信息,甚至就某些選中的話題以預(yù)先設(shè)定的自然語(yǔ)言進(jìn)行政治交流,進(jìn)而給人一種置身人機(jī)互動(dòng)情景中的錯(cuò)覺。
第二,大模型和深度偽造正在急劇模糊真假信息的邊界。在過去的幾年里,由于生成式人工智能技術(shù)的進(jìn)步特別是ChatGPT和深度偽造技術(shù)的盛行,假新聞現(xiàn)象出現(xiàn)得越來(lái)越頻繁。為了辟謠和降低假新聞的負(fù)面影響,事實(shí)核查人員需要夜以繼日地分析政治人物的在線演講、新聞報(bào)道、出版物和政府統(tǒng)計(jì)數(shù)據(jù)等。但鑒于虛假信息的龐大數(shù)量,以及虛假信息在各種社交平臺(tái)像病毒一樣的繁殖和變異能力,只有極少數(shù)有爭(zhēng)議的文章能夠在時(shí)間、人力、物力和技術(shù)的承受范圍內(nèi)得到徹底的事實(shí)核查。據(jù)報(bào)道,在美國(guó)人工智能研究領(lǐng)域,識(shí)別假新聞的研究所受到的關(guān)注和支持要遠(yuǎn)比創(chuàng)建假新聞的研究少得多。[3]有學(xué)者為此慨嘆道:“與檢測(cè)假新聞相比,深度偽造方面的研究人數(shù)是100比1。我們檢測(cè)的能力被造假的能力遠(yuǎn)遠(yuǎn)超過。”[4]正因如此,在社交媒體上創(chuàng)建和傳播假新聞越來(lái)越成為一個(gè)難以遏制的現(xiàn)象,在某些國(guó)家和地區(qū)假新聞肆虐猖獗甚至已經(jīng)開始影響當(dāng)?shù)氐恼芜x舉進(jìn)程和國(guó)際關(guān)系狀態(tài)。
第三,在線有組織地協(xié)同網(wǎng)絡(luò)攻擊和輿論壓制越來(lái)越頻繁。[5]這突出的表現(xiàn)為世界各地的政府和政治組織正在花費(fèi)大量資源來(lái)組建“網(wǎng)絡(luò)宣傳隊(duì)”和“數(shù)字水軍”,意圖在數(shù)字空間中有目的地運(yùn)用計(jì)算宣傳技術(shù)開展虛假宣傳和政治抹黑活動(dòng),這些參與者依靠自動(dòng)化、算法和大數(shù)據(jù)分析來(lái)影響或欺騙數(shù)字用戶。與黑客團(tuán)體或其他非國(guó)家行為體不同,盡管都使用計(jì)算宣傳技術(shù)進(jìn)行網(wǎng)絡(luò)動(dòng)員和政治溝通,“網(wǎng)絡(luò)數(shù)字水軍”通常由國(guó)家財(cái)政資金支持、設(shè)有嚴(yán)密的組織機(jī)構(gòu)并配合專業(yè)的技能培訓(xùn),以便能夠步調(diào)一致地展開在線宣傳并制造虛假共識(shí)。這些有組織的計(jì)算宣傳活動(dòng)形式多樣、目標(biāo)不一,有的目的在于歪曲事件真相,有的意圖轉(zhuǎn)移視線,還有的試圖制造熱點(diǎn)、吸引公眾注意力。事實(shí)上,國(guó)家行為體和非國(guó)家行為體都正在試圖利用算法驅(qū)動(dòng)在數(shù)字時(shí)代行使權(quán)力,甚至有不少國(guó)家將計(jì)算宣傳特別是網(wǎng)絡(luò)數(shù)字水軍列為“網(wǎng)絡(luò)戰(zhàn)武器庫(kù)”中重要的戰(zhàn)略手段。
第四,由計(jì)算宣傳所導(dǎo)致的政治不信任擴(kuò)散效應(yīng)越來(lái)越明顯。通過社交媒體平臺(tái)操縱輿論、表達(dá)政治訴求并尋求實(shí)現(xiàn)政治意愿,已經(jīng)成為當(dāng)代數(shù)字社會(huì)的一個(gè)普遍現(xiàn)象。鑒于計(jì)算宣傳在政治領(lǐng)域中所展示出來(lái)的在線“吸粉”與網(wǎng)絡(luò)動(dòng)員效應(yīng),越來(lái)越多的計(jì)算宣傳技術(shù)正在從政治領(lǐng)域擴(kuò)散到其他領(lǐng)域。譬如,在醫(yī)療保健和公共衛(wèi)生治理領(lǐng)域,社交機(jī)器人一度被用于放大圍繞疫苗的種種在線辯論的傳播效果,以求喚起公眾對(duì)某些觀點(diǎn)和政策的響應(yīng)支持;在自然災(zāi)害和恐怖襲擊事件中,各種虛假信息頻出,深度偽造正成為各類謠言滋生的“技術(shù)溫床”;在科學(xué)研究和娛樂領(lǐng)域,內(nèi)容推薦正被用來(lái)創(chuàng)建大量相關(guān)主題鏈接,社交機(jī)器人產(chǎn)生的各種虛假評(píng)論正在營(yíng)造虛假的文章引用和電影好評(píng)。
綜上所述,伴隨著社會(huì)生活“網(wǎng)絡(luò)化”和“智能化”趨勢(shì)的加速發(fā)展,一方面,由算法驅(qū)動(dòng)的計(jì)算宣傳正在成為數(shù)字政治溝通的常態(tài)操作;另一方面,算法又存在著被別有用心的個(gè)人、機(jī)構(gòu)和國(guó)家濫用的風(fēng)險(xiǎn),算法恐懼的陰霾可能無(wú)處不在。放眼未來(lái),無(wú)論是在國(guó)際政治還是在國(guó)內(nèi)政治中,公眾對(duì)于計(jì)算宣傳威脅個(gè)人決策自由和機(jī)器人賬戶主導(dǎo)政治對(duì)話的擔(dān)心都在與日俱增,由計(jì)算宣傳所導(dǎo)致的社會(huì)信任風(fēng)險(xiǎn)治理和防范迫在眉睫。
朝向可信人工智能:在不信任的世界里重建信任關(guān)系
顯而易見,人工智能已成為我們生活的一部分,它是一項(xiàng)正在進(jìn)行的偉大技術(shù)突破,其深遠(yuǎn)影響尚未真正顯現(xiàn)。但由于其算法黑箱的非解釋性和不透明性,人機(jī)關(guān)系連帶人際關(guān)系都在遭受信任侵蝕。大量的算法實(shí)踐表明,未經(jīng)審查、不受限制和未經(jīng)許可的算法應(yīng)用不僅會(huì)侵犯?jìng)€(gè)人隱私、泄露商業(yè)機(jī)密和危害國(guó)家安全,而且不公平、不透明和不受約束的算法應(yīng)用還極易引發(fā)并放大種族主義、性別歧視、地域歧視和其他社會(huì)偏見,進(jìn)而使其演化為政治懷疑并激發(fā)社會(huì)沖突。譬如,2024年2月,美國(guó)新罕布什爾州民主黨選民的自動(dòng)電話通話中就出現(xiàn)了模仿美國(guó)總統(tǒng)拜登聲音的深度偽造音頻,敦促選民不要在該州共和黨初選中投票。此類人工智能工具的應(yīng)用引發(fā)了人們對(duì)在線信息來(lái)源的不信任。為此,美國(guó)政府正在起草新的法律,以禁止生產(chǎn)和傳播冒充個(gè)人的深度偽造內(nèi)容。[6]除此以外,歐盟就《人工智能法案》已達(dá)成一致,預(yù)計(jì)2026年生效;東盟則希望盡快完善《人工智能道德和治理指南》。
總體而言,人工智能應(yīng)該尊重隱私和數(shù)據(jù)保護(hù)法規(guī),以安全可靠、透明和負(fù)責(zé)任的方式運(yùn)行,并盡力減少偏見和歧視,如此,智能化方能更好地促進(jìn)創(chuàng)新并帶動(dòng)社會(huì)經(jīng)濟(jì)增長(zhǎng)。一言以蔽之,在智能化的社會(huì)中,我們需要透明、可信賴的人工智能。為此,2019年4月8日,人工智能高級(jí)別專家組提出了《可信人工智能道德準(zhǔn)則》,認(rèn)為人工智能系統(tǒng)應(yīng)滿足以下至少七項(xiàng)關(guān)鍵要求,才能被認(rèn)為是值得信賴的。這些要求大體可歸結(jié)為:其一,人工智能應(yīng)該賦能人類決策,在使人們能夠作出明智的決定、維護(hù)人類基本權(quán)利的同時(shí),還需要確保在過程中始終存在適當(dāng)?shù)娜祟惐O(jiān)督;其二,人工智能需要具備技術(shù)穩(wěn)健性和安全性,在出現(xiàn)安全問題時(shí)要有后備計(jì)劃并確保最大限度地減少和預(yù)防意外傷害;其三,在尊重隱私保護(hù)的同時(shí),還必須建立健全數(shù)據(jù)治理機(jī)制,既要考慮數(shù)據(jù)的完整性和質(zhì)量,也要確保數(shù)據(jù)的合法訪問;其四,人工智能系統(tǒng)及商業(yè)模式應(yīng)該透明可解釋,要確保用戶充分了解系統(tǒng)的功能和局限,且因人工智能使用所產(chǎn)生的后果責(zé)任應(yīng)該可追溯;其五,人工智能算法應(yīng)具有非歧視性和公平性,其使用要向所有人開放并全力避免弱勢(shì)群體的邊緣化,其監(jiān)督和管理應(yīng)遵循利益相關(guān)者參與的多樣性原則;其六,人工智能系統(tǒng)應(yīng)該是可持續(xù)的和環(huán)境友好的,要造福全人類包括子孫后代,同時(shí)也要關(guān)照環(huán)境和其他生物需求;其七,人工智能系統(tǒng)應(yīng)該具有可審計(jì)性,以評(píng)估算法、數(shù)據(jù)和設(shè)計(jì)流程中的責(zé)任并以此設(shè)立問責(zé)機(jī)制和補(bǔ)救措施。[7]
綜上所述,每一項(xiàng)偉大的技術(shù)變革背后都隱藏著難以預(yù)見的風(fēng)險(xiǎn)。首先,我們要構(gòu)建可解釋的人工智能。目前,即使是數(shù)據(jù)科學(xué)家也難以解釋人工智能模型的全部工作原理,以至于在人機(jī)關(guān)系中,算法服務(wù)要么被接受、要么被強(qiáng)制接受。如果不能解釋這些模型或這些模型不具有“可解釋性”,則人機(jī)關(guān)系就會(huì)處于緊張的不被信任狀態(tài)。正是考慮到這一點(diǎn),歐盟《通用數(shù)據(jù)保護(hù)條例》(GDPR)明確要求數(shù)據(jù)處理須透明且流程要清晰。模型解釋對(duì)于增進(jìn)機(jī)器及其服務(wù)的可接受性至關(guān)重要。在最近的一項(xiàng)美國(guó)專利申請(qǐng)中,英特爾提出了一種神經(jīng)網(wǎng)絡(luò)可理解技術(shù),該技術(shù)可識(shí)別在機(jī)器學(xué)習(xí)訓(xùn)練階段觀察到的結(jié)果與在操作過程中獲得的結(jié)果之間的差異,但從算法可理解到算法可解釋仍有很長(zhǎng)的路要走。為此,無(wú)論是學(xué)界和業(yè)界都要加強(qiáng)算法從“全黑箱”到“白箱”的努力,以使算法在可解釋的前提下作出可信決策。當(dāng)然,這種解釋權(quán)目前僅僅歸于開發(fā)者和運(yùn)營(yíng)者是遠(yuǎn)遠(yuǎn)不夠的,用戶有權(quán)要求獲得相關(guān)算法決策的基本原理并了解其中的安全風(fēng)險(xiǎn)。
其次,要增強(qiáng)人工智能的透明度。用戶需要了解AI系統(tǒng)是如何作出決策的,以及背后的依據(jù)是什么,通過揭示人工智能算法的內(nèi)部運(yùn)作原理并揭示影響其決策的因素,人們不僅可以塑造一個(gè)符合自身價(jià)值觀、愿望和尊嚴(yán)的人工智能賦能系統(tǒng),而且還可以識(shí)別人工智能算法中隱藏的偏見。因此,研究人員需致力于開發(fā)可解釋性模型,以使決策過程能夠被理解和驗(yàn)證。有關(guān)這一點(diǎn),學(xué)界和產(chǎn)業(yè)界是有共識(shí)的。譬如,2022年,由59位世界級(jí)學(xué)者共同撰寫的《邁向可信賴的人工智能:可驗(yàn)證聲明的支持機(jī)制》報(bào)告,詳細(xì)闡述了可信賴人工智能應(yīng)該涵蓋的透明機(jī)制。整個(gè)報(bào)告由OpenAI牽頭,涉及機(jī)構(gòu)多達(dá)30多家,谷歌大腦、圖靈研究所和很多歐美大學(xué)都有參與。由此,人工智能的數(shù)據(jù)收集和訓(xùn)練應(yīng)遵循合規(guī)性和透明度原則,并通過加密、去標(biāo)識(shí)化等手段確保數(shù)據(jù)的安全性。只有加強(qiáng)透明度、遵循道德準(zhǔn)則、確保數(shù)據(jù)隱私和防止惡意攻擊,人工智能才能最大程度釋放潛力為社會(huì)創(chuàng)造更多價(jià)值。
再次,建立算法模型倫理指南與監(jiān)管問責(zé)機(jī)制??紤]到人工智能技術(shù)驚人的進(jìn)步與迭代速度,監(jiān)管協(xié)調(diào)與監(jiān)管協(xié)作已成為人工智能治理領(lǐng)域的一個(gè)熱點(diǎn)話題。2024年3月13日,歐洲議會(huì)高票通過《人工智能法》,旨在針對(duì)快速發(fā)展的人工智能領(lǐng)域制定全面的監(jiān)管措施。2024年3月21日,聯(lián)合國(guó)大會(huì)通過了一項(xiàng)決議,呼吁抓住“安全、可靠和值得信賴的”人工智能系統(tǒng)帶來(lái)的機(jī)遇,讓人工智能給人類帶來(lái)“惠益”,并以此促進(jìn)可持續(xù)發(fā)展。而在此前,2017年7月,我國(guó)就發(fā)布了《新一代人工智能發(fā)展規(guī)劃》,規(guī)劃呼吁要確保人工智能安全、可靠、可控發(fā)展;2019年2月,科技部在北京召開新一代人工智能發(fā)展規(guī)劃暨重大科技項(xiàng)目啟動(dòng)會(huì),成立了新一代人工智能治理專業(yè)委員會(huì);同年6月,國(guó)家新一代人工智能治理專業(yè)委員會(huì)發(fā)布了《新一代人工智能治理原則》;2021年9月,《新一代人工智能倫理規(guī)范》正式發(fā)布,細(xì)化落實(shí)《新一代人工智能治理原則》,將倫理道德融入人工智能全生命周期;2023年4月11日,國(guó)家互聯(lián)網(wǎng)信息辦公室發(fā)布《生成式人工智能服務(wù)管理辦法(征求意見稿)》,擬對(duì)生成式人工智能在我國(guó)的開發(fā)及應(yīng)用進(jìn)行規(guī)范。
可以看出,正是考慮到人工智能的不可解釋性和不透明性所帶來(lái)的種種社會(huì)信任挑戰(zhàn),以算法為驅(qū)動(dòng)的人工智能服務(wù)才需要在設(shè)計(jì)之初就充分考慮信任、透明度和容錯(cuò)性等問題,并基于前敘規(guī)則和規(guī)范受到監(jiān)管,如此方能向善、造福人類社會(huì)。當(dāng)然,目前由于數(shù)字鴻溝的存在,各國(guó)對(duì)人工智能風(fēng)險(xiǎn)的理解也不盡相同,各國(guó)需要在技術(shù)上兼容、在認(rèn)知上交流、在監(jiān)管上協(xié)調(diào)、在開發(fā)應(yīng)用上協(xié)作。
結(jié)論
在一個(gè)由技術(shù)創(chuàng)新和全球互聯(lián)互通驅(qū)動(dòng)的世界中,一方面,人們正在尋求值得信賴的人工智能;另一方面,社會(huì)對(duì)政府、機(jī)構(gòu)、媒體和人際關(guān)系的信任正在遭受威脅。在這場(chǎng)信任危機(jī)中,人工智能正處于信任對(duì)話的中心。當(dāng)人們?cè)絹?lái)越多地求助人工智能系統(tǒng)來(lái)幫助決策、提供建議并分析信息時(shí),人工智能在很多時(shí)候不僅沒有消解人類固有的偏見和錯(cuò)誤,反而因其算法黑箱的不可解釋性和不透明性固化并放大了社會(huì)歧視。未來(lái),對(duì)智能社會(huì)的信任關(guān)系維護(hù),必須在全球?qū)用娼⑾嚓P(guān)機(jī)構(gòu)以監(jiān)測(cè)和報(bào)告人工智能系統(tǒng)的脆弱性,并對(duì)人工智能系統(tǒng)應(yīng)用所帶來(lái)的社會(huì)穩(wěn)定破壞給出及時(shí)且有效的應(yīng)對(duì)。為此,我們可以考慮在算法開發(fā)者、應(yīng)用者、銷售者、傳播者以及管理者之間建立起溝通橋梁,并以國(guó)際規(guī)范為基礎(chǔ)設(shè)立問責(zé)和管控機(jī)制,定期評(píng)估人工智能的風(fēng)險(xiǎn)和影響,以便重建人機(jī)互信關(guān)系和人際互信關(guān)系,形成一個(gè)公平、公正、智能化、可信賴的社會(huì)生態(tài)體系。
注釋
[1]B. Combes, “Digital Natives or Digital Refugees? Why We Have Failed Gen Y?“ 2021, https://www.researchgate.net/publication/238050945_Digital_Natives_or_Digital_Refugees_Why_we_have_failed_Gen_Y.
[2]H. Kelly and E. Guskin, “Americans Widely Distrust Facebook, TikTok and Instagram with Their Data, Poll Finds,“ 2021, https://www.washingtonpost.com/technology/2021/12/22/tech-trust-survey/.
[3]J. Vincent, “Deepfake Detection Algorithms Will Never Be Enough,“ 2019, https://www.theverge.com/2019/6/27/18715235/deepfake-detection-ai-algorithms-accuracy-will-they-ever-work.
[4]A. Engler, “Fighting Deepfakes When Detection Fails,“ 2019, https://www.brookings.edu/research/fighting-deepfakes-when-detection-fails/.
[5]S. Bradshaw and P. N. Howard, “The Global Disinformation Order 2019 Global Inventory of Organised Social Media Manipulation,“ 2019, https://demtech.oii.ox.ac.uk/wp-content/uploads/sites/12/2019/09/CyberTroop-Report19.pdf.
[6]S. Torkington, “The US is Drafting New Laws to Protect Against AI-Generated Deepfakes,“ 2024, https://www.weforum.org/agenda/2024/02/ai-deepfakes-legislation-trust/.
[7]The High-Level Expert Group, “Ethics Guidelines for Trustworthy AI,“ 2019, https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.
Algorithmic Black Box and Trust Reconstruction in the Era of Artificial Intelligence
Dong Qingling
Abstract: Trust is the cornerstone of both human-machine interaction and interpersonal interaction. However, due to the opacity and non-interpretability of the algorithmic black box, AI systems and their services, while empowering and facilitating some individuals, are also eroding, excluding, and marginalizing the interests of others through algorithmic abuse, misuse, and monopolization. In this sense, algorithms are reconstructions, and programs are politics. In intelligent environments, trust is undermined and eroded not only in human-machine interactions but also in traditional interpersonal relationships, which are declining due to online anonymity and algorithm-driven. Considering the various social trust challenges brought by AI, AI governance centered on algorithmic regulation should firstly focus on constructing a trustworthy AI ecosystem with a people-oriented approach and rebuild human-machine and interpersonal trust based on technological nature and ethical and legal frameworks.
Keywords: algorithmic black box, human-machine trust, interpersonal trust, computational politics